雅可比行列式是以n个n元函数的偏导数为元素的行列式,常记为。事实上,在函数都连续可微(即偏导数都连续)的条件之下,函数组的微分形式为的系数矩阵(即雅可比矩阵)的行列式。
雅可比行列式通常称为雅可比式(Jacobian),它是以n个n元函数的偏导数为元素的行列式。事实上,国际物流,在函数都连续可微(即偏导数都连续)的条件之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。
若因变量对自变量连续可微,国际物流,而自变量对新变量连续可微,则因变量也对新变量连续可微。
这可用行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则。
偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
就是行列式的计算先提取第2列的r,和第3列的r*sinφ得原行列式为r^2sinφ*|A|其中|A|=sinφcosθcosφcosθ-sinθsinφsinθcosφsinθcosθcosφ-sinφ0只要计算出这个行列式就可以,由3阶行列式的计算公式(对角线法则)得|A|=(cosφ)^2(cosθ)^2+(sinφ)^2(sinθ)^2+(sinθ)^2(cosφ)^2+(sinφ)^2(cosθ)^2=1所以最后结果为r^2*sinφ
雅可比行列式通常称为雅可比式(Jacobian),它是以n个n元函数的偏导数为元素的行列式。坐标系变换后单位微分元的比率或倍数。由于非线性方程组被线性化(偏微分)后,可以使用矩阵工具了,雅克比矩阵就是这个线性化后的矩阵。任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:(1)对于任意向量X,‖X‖≥0,且‖X‖=0óX=0。(2)对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖。(3)对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖。简介在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌进其中。它们全部都以数学家卡尔·雅可比命名;英文雅可比行列式"Jacobian"可以发音为[ja?kobi?n]或者[???kobi?n]。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。
千航国际 |
国际空运 |
国际海运 |
国际快递 |
跨境铁路 |
多式联运 |